Top BSM at DØ

Revision: 1.12

Daniel Wicke (Bergische Universität Wuppertal)

for the DØ collaboration

Introduction and Outline

We can question the SM-likeness of the top quark in several ways:

- a) Is it the really (to 100%) the top that we see?
- b) Is it decaying (to 100%) as expected in SM?
- c) Does it have the expected quantum numbers?
- d) Is it produced (to 100%) by SM mechanisms?

This talk covers one analysis for each of these questions.

Is it the really the top quark?

Stop Pair Production

Are we really looking at top quarks only?

- An admixture of particles with similar signature might have gone unnoticed
- Stop, \tilde{t} , is such a candidate
- Decays: $\tilde{t}_1 \to \tilde{\chi}_1^0 t \to \chi_1^0 b W$ $\tilde{t}_1 \to \tilde{\chi}_1^+ b \to \chi_1^0 b W$
- Decays similar to top-quarks can dominate over a large range of $\tan\beta$
- Assumptions: $m_{\tilde{t}} \leq m_t$; m_{χ^\pm} and m_{χ^0} close to exp. limits

Signature

Signature of the considered $\tilde{t}\bar{\tilde{t}}$ production is very similar to SM $t\bar{t}$ production ℓ +jets channel considered

High p_T Lepton, E_T from χ^0 and ν , jets from 2 b quarks and 2 light quarks

Dataset and Background Description

- Selection as cross-section (Iso. electron or muon, E_T , ≥ 4 jets, ≥ 1 b-tag)
- Until now $\sim 0.9\,\mathrm{fb}^{-1}$ analysed
- Background description
 - $t\bar{t}$, and further, minor backgrounds : MC normalised to theroy.
 - -W+jets normalisation from data (Matrix Method), kinematics from MC
 - Multijet from data (Matrix Method)
- Signal MC is generated for a variety of Stop/Chargino masses.

Likelihood (I)

To distinguish top pair from stop pair production a likelihood is constructed

Constraint fit to construct add. observables

Constraint Fit

Reconstruct as if top pair event:

•
$$m_{qq} = M_W$$
, $m_{\ell\nu} = M_W$, $m_t^{(1)} = m_t^{(2)}$

- ullet Jet-parton assignment by best χ^2 b-tagged jets assigned to b-quarks only
- Inputs to likelihood:
 - m_t , $\cos \theta^*(b, b) \ m(b, b)$, $\Delta R(W, b_{\text{samechain}}), \ \Delta R(W, b_{\text{otherchain}})$

Plots show m_t for data and simulation

Likelihood (II)

Kinematic variables

• p_t leading b-jet, $M_T(W_\ell), K_{T,\min}, m(j_3, j_4),$ $\Delta R(b\text{-jet}, \text{leading other jet}),$ $\Delta R(\ell,b)$

Construction

• Signal and bkg. prob. densities P(x)built from expected distributions.

•
$$\mathcal{L}(x) = \frac{P_{\text{sig}}(x)}{P_{\text{sig}}(x) + P_{\text{bkg}}(x)}$$

 \mathcal{L} separates stop signal from bkg.

ullet Choice of input vars optimised per $m_{ ilde t}$, m_{χ^\pm}

Data look quite SM like

$$m_{\tilde{t}}=175~\mathrm{GeV},\,m_{\chi^\pm}=135~\mathrm{GeV}$$

Results

We set limits on cross-section for various $m_{\tilde{t}}$, $m_{\chi^{\pm}}$:

- ullet Bayesian approach with flat prior in $\sigma_{ ilde{t}ar{ ilde{t}}}$
- Systematics considered by fluctuating the Poisson parameter of the prob.df
 - $t\bar{t}$ normalisation (incl. m_t dependency), Selection eff, Luminosity, ...

ullet Simultaneous determination of $\sigma_{tar{t}}$ and $\sigma_{tar{t}}$ yields very similar results

Cross-check with Ensemble Tests

Observed limits much larger than expected ones

- 500 pseudo results were produced for SM phyiscs
- Distribution of results reveals large tails towards high value limits
- ullet Some percent of ensembles worse that $\mu+{
 m jets}$ channel

Result can be interpreted as SM fluctuation

Is it decaying as expected?

Non-standard decay mode

New particles in the final state alter deduced $\sigma_{t\bar{t}}$ depending on decay channel $C = \ell + \mathrm{jets}$, Dilepton

$$\sigma_{t\bar{t}}^C = \sigma_{t\bar{t}} \cdot \frac{B^{\text{BSM}}(t\bar{t} \to C)}{B^{\text{SM}}(t\bar{t} \to C)}$$

- Check cross-section ratio $R_{\sigma} = \frac{\sigma_{t\bar{t}}^{\ell+\mathrm{jets}}}{\sigma_{t\bar{t}}^{\mathrm{Dilepton}}}$
- Consider decay $t \to b H^\pm$ with $H^\pm \to c s$
- i.e. leptophobic charged Higgs

Within MSSM relevant only at low an eta

General multi-Higgs-doublet models allow such leptophobic charged Higgs

Determination of Cross Section Ratio

Utilise $\sim 0.9\,\mathrm{fb}^{-1}$ ($\ell+\mathrm{jets}$) and $\sim 1.0\,\mathrm{fb}^{-1}$ (Dilepton)

Important: treat correlations correctly

- Fully correlated:
 - Lepton and Primary vertex ID
 - Muon trigger
 - JES, JER, JetID
 - Diboson normalisation
- Lumi uncertainty cancels in ratio
- Remaining: uncorrelated

Implemented combined ensemble testing.

- Draw event number according to Poisson statistics
- Vary expectation parameters according to systematics correlated/uncorrelated

Determination of Cross Section Ratio (II)

Proceedure is repeated for many hyothetical values of R.

- ullet Done by changing $\sigma_{tar{t}}^{\ell+{
 m jets}}$
- 10000 pseudo results per nominal R_{σ}
- \bullet Fitted to have parametric relation between $R_{\sigma}^{\rm measured}$ and $R_{\sigma}^{\rm nominal}$

Interpreted using Feldman-Cousins approach:

- Find most likely interval of nominal R_{σ} that may yield observed value.
- Add points according to max. likelihood ratio.
- 68% confidence intervall of $R_{\sigma}^{\rm nominal}$:

$$R_{\sigma} = 1.21 \pm 0.27 \, \mathrm{pb}$$

Top Branching Ratio to H^\pm

Assuming $H^{\pm} \rightarrow cs$ to 100%:

- ullet Dilepton: both tops need to decay through W
- ullet $\ell+{\sf jets}$: only one or both may decay through W

$$\Rightarrow$$
 Ratio: $R_{\sigma} = 1 + \frac{x}{(1-x)B(W \to qq)}$

• Formula is extended to account for leakage between the channels.

 $B(t \to bH^{\pm})$ is deduced as R_{σ} before.

- Pseudo results (ensembles) created with proper systematic variation
- Functional form fitted
- Interpreted using Feldman-Cousins approach.

Top Branching Ratio to H^{\pm}

For a 80 GeV charged Higgs decaying only hadronically we find

• Expected limit within SM: $B(t \to bH^{\pm}) < 0.25 \ (95\%CL)$

$$B(t \to bH^{\pm}) = 0.13 \pm 0.12$$

$$B(t \to bH^{\pm}) = 0.13 \pm 0.12$$
 $B(t \to bH^{\pm}) < 0.35 \text{ (95\%CL)}$

Does it have the expected quantum numbers?

Top Quarks Electrical Charge

Do objects used to reconstruct tops add up to the expected charge?

Requires reconstruction of:

- ullet W charge \Longrightarrow lepton charge
- b-quark charge \Longrightarrow jet charge (more involved)

Performed in ℓ +jets channel with $370 \,\mathrm{pb}^{-1}$

Jet charge

Sum charge of tracks in b-jet

- Errors from in- and out-of-cone tracks
- Statistical method
- ullet Weighting with p_T helps

$$Q_{\text{jet}} := \frac{\sum q_i \cdot p_{Ti}^{0.6}}{\sum p_{Ti}^{0.6}}$$

Calibration

- Using double (vertex) tagged $b\bar{b}$ dijets w/ soft μ ($\Delta\phi \leq 3.0$)
- Soft μ determines b charge, $Q_{\rm Jet}$ calibrated on opposite jet.
- Disentangle b, \bar{b} , c, \bar{c} contributions to obtain pure b-jet Q_{Jet} distribution

Top Quark Charge Analysis

- Need to assign b-jet to right top
 Choose best fit to top hypothesis
- Combine lepton and b-jet charge to top charge (leptonic and hadronic side):

$$Q_{\text{lep}} = |q_l + q_{b_l}|$$

$$Q_{\text{had}} = |-q_l + q_{b_h}|$$

Templates generated from standard model MC.
 Exotic case by permuting jet charge.

DØ Result (370 pb⁻¹)

Unbinned likelihood ratio also accouting for remaining background yields

p-value for $|q_{\rm top}|=4e/3$ is 7.8%. Bayes factor is 4.3.

Is it produced by SM mechanisms only?

Resonant Production of Top Pairs

No resonance production in $t\bar{t}$ expected in SM, but some models predict bound $t\bar{t}$ -states

- new strong gauge force coupling to 3rd generation
- ullet top-color assisted technicolor: Z'

Such a reasonance should create a bump in differential cross-section $\frac{\mathrm{d}\sigma}{\mathrm{d}m_{t\bar{t}}}$

Assume its width is smaller than detector mass resolution

Reconstruction of Invariant Mass of $tar{t}$

- Reconstruct $m_{t\bar{t}}$ directly from ℓ , ν and up to 4 leading jets (no constraint fit)
- Neutrino: p_x, p_y components from E_T and p_z^{ν} from $M_W^2 = (p^{\nu} + p^l)^2$
- Selection as cross-section (Iso. electron or muon, E_T , ≥ 3 jets, ≥ 1 b-tag)

- ullet Resonant production shows more narrow $M_{tar{t}}$ distributions than SM $tar{t}$
- With increasing resonance mass SM background becomes less important.

Background Estimation

- $t\bar{t}$, Z+jets, single top quark and diboson: MC normalized to theory.
- ullet $W+{
 m jets}$, normalisation from data, shape from Monte Carlo
- Multijet from data only

Top pair invariant mass

Limit calculation

Bayesian statistics is used to determine obtain the results (as for stop)

Systematics (Expected Limits for $0.9 \, \text{fb}^{-1}$)

Expected limits are computed by using background prediction as "observation"

Systematics may just scale the background or change the background shape

- JES affects medium M_X
- Luminosity, efficenies, ...
 scale like bkg shape
- m_t affects low M_X

High M_X stat. dominated

Top Resonance Results $(2.1 \, \text{fb}^{-1})$

- All measured $\sigma_X \cdot B(X \to t\bar{t})$ close to zero (max. deviation $\sim 1\sigma$)
- Thus we set limits on $\sigma_X \cdot B(X \to t\bar{t})$
- Top-color assisted technicolor Z':

Expected Limit $M_{Z^\prime} > 795\,\mathrm{GeV}$ Observed Limit: $M_{Z^\prime} > 760\,\mathrm{GeV}$

Summary

- With increasing Luminosity we get access to more and more BSM phenomena
- DØ has questiond the SM-likeness in various aspects
 - Search for Stop admixture
 - Search for charged Higgs in top decay
 - Check of top electric charge
 - Search for resonant $t\bar{t}$ production
- No deviation from SM was observed, yet.

DØ is working on updates for all these analyses